.(Дано: abcd-прямоугольник bc||ad, ab=dc, dk-бисектрисса ad=28см, cd=12см, найти: ab, kd.).

ответ: AB=12, DK=12*2^1/2


A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает

площадь полной поверхности = площади боковой поверхности + 2 площади основания.
1) в оснвоании лежит прямоугольный треугольник. площадь находим как 1/2 произведения катетов , т..е 12*5: 2= 30 см^2/
2)площадь бококвой поверхности = половине периметра основания на высоту.
чтобы найти периметр , надо знать все три стороны треугольника. треугольник прямоугольный, поэтому гипотенузу находим по теореме пифагора. 12^2+5^2=144+25=169, гипотенуза равна 13.
3) ищем периметр 13+12+5=30 см.
4) ищем площадь боковой поверхности 30*10=300
5) площадь полной поверхности равна 300+2*30=360 см
подробнее - на -