22.05.2022 05:24
Решено
.(2теплохода отошли одновременно навстречу от двух пристаней расстояние между которыми 120мк, скорость
Лучшие ответы

4
4,4(46 оценок)
Математика
22.05.2022 20:36
1) 18+22=40(км/ч)-скорость обоих теплоходов
2) 120:40=3(ч)
ответ:Теплоходы встретятся через 3 часа.

11
4,4(39 оценок)
Математика
22.05.2022 13:14
1) Была влажность 23%.
100%-23%=77% - сухого зерна
После просушки влажность 12%
100% -12%=88% стало содержание сухого зерна
2) Содержание сухого зерна изменилось с 77% до 88%, , то есть вся масса уменьшилась в (77% / 88%) =77/88=7/8 раза.
3) Вся масса зерна после просушки составляет 7/8 от всей первоначальной массы.
Пропорция:
1 100%
7/8 х%
х=7*100%/8 = 87,5% (от первонач. массы)
4) 100%-87,5% =12,5% (на столько масса всего зерна уменьшилась после просушки)
ответ 12,5%
100%-23%=77% - сухого зерна
После просушки влажность 12%
100% -12%=88% стало содержание сухого зерна
2) Содержание сухого зерна изменилось с 77% до 88%, , то есть вся масса уменьшилась в (77% / 88%) =77/88=7/8 раза.
3) Вся масса зерна после просушки составляет 7/8 от всей первоначальной массы.
Пропорция:
1 100%
7/8 х%
х=7*100%/8 = 87,5% (от первонач. массы)
4) 100%-87,5% =12,5% (на столько масса всего зерна уменьшилась после просушки)
ответ 12,5%

0
4,7(51 оценок)
Математика
22.05.2022 00:17
1) 2cos^2 x - 5sin x + 1 = 0
2 - 2sin^2 x - 5sin x + 1 = 0
-2sin^2 x - 5sin x + 3 = 0
2sin^2 x + 5sin x - 3 = 0
Квадратное уравнение относительно sin x
D = 5^2 - 4*2(-3) = 25 + 24 = 49 = 7^2
sin x = (-5 - 7)/4 = -12/4 = -3
Решений нет
sin x = (-5 + 7)/4 = 1/2
x = (-1)^k*pi/6 + pi*k
2) f(x) = (2x^3 - 1) / (2x^4 - 8)
f ' (x) = [6x^2*(2x^4 - 8) - (2x^3 - 1)*8x^3] / (2x^4 - 8)^2 =
= (12x^6 - 48x^2 - 16x^6 + 8x^3) / (2x^4 - 8)^2 = (-4x^6 + 8x^3 - 48x^2) / (2x^4 - 8)^2 = 0
Если дробь равна 0, то числитель равен 0, а знаменатель нет.
-4x^6 + 8x^3 - 48x^2 = 0
Делим всё на -4
x^6 - 2x^3 + 12x^2 = 0
а) x1 = x2 = 0; f(0) = (-1)/(-8) = 1/8
Но производная отрицательна и при x < 0, и при x > 0.
Поэтому x = 0 - критическая точка, но не экстремум, а точка перегиба.
Потому что в ней f '' (x) = 0
б) x^4 - 2x + 12 = 0
Это уравнение действительных корней не имеет
в) У функции ещё есть точки разрыва
2x^4 - 8 = 0
x^4 - 4 = 0
x1 = -√2
x2 = √2
Но производная все равно отрицательна при всех x, кроме точек разрыва.
ответ: функция убывает на всей области определения.
3) (2/3)^(2x+3) <= (9/2)^(x-2)
(2/3)^(2x) * (2/3)^3 <= (9/2)^x * (2/9)^2
(4/9)^x * 8/27 <= (9/2)^x * 4/81
(4/9 * 2/9)^x <= (4/81) * (27/8)
(8/81)^x <= 1/6
Основание 0 < 8/81 < 1, поэтому график убывает.
При переходе от степеней к показателям знак неравенства меняется

5)
6) f(x) = x^2 - 2x; x0 = 3
f(x0) = 3^2 - 2*3 = 9 - 6 = 3
f ' (x) = 2x - 2
f ' (x0) = 2*3 - 2 = 4
Уравнение касательной
y = f(x0) + f ' (x0)*(x - x0) = 3 + 4(x - 3) = 3 + 4x - 12
y = 4x - 9
2 - 2sin^2 x - 5sin x + 1 = 0
-2sin^2 x - 5sin x + 3 = 0
2sin^2 x + 5sin x - 3 = 0
Квадратное уравнение относительно sin x
D = 5^2 - 4*2(-3) = 25 + 24 = 49 = 7^2
sin x = (-5 - 7)/4 = -12/4 = -3
Решений нет
sin x = (-5 + 7)/4 = 1/2
x = (-1)^k*pi/6 + pi*k
2) f(x) = (2x^3 - 1) / (2x^4 - 8)
f ' (x) = [6x^2*(2x^4 - 8) - (2x^3 - 1)*8x^3] / (2x^4 - 8)^2 =
= (12x^6 - 48x^2 - 16x^6 + 8x^3) / (2x^4 - 8)^2 = (-4x^6 + 8x^3 - 48x^2) / (2x^4 - 8)^2 = 0
Если дробь равна 0, то числитель равен 0, а знаменатель нет.
-4x^6 + 8x^3 - 48x^2 = 0
Делим всё на -4
x^6 - 2x^3 + 12x^2 = 0
а) x1 = x2 = 0; f(0) = (-1)/(-8) = 1/8
Но производная отрицательна и при x < 0, и при x > 0.
Поэтому x = 0 - критическая точка, но не экстремум, а точка перегиба.
Потому что в ней f '' (x) = 0
б) x^4 - 2x + 12 = 0
Это уравнение действительных корней не имеет
в) У функции ещё есть точки разрыва
2x^4 - 8 = 0
x^4 - 4 = 0
x1 = -√2
x2 = √2
Но производная все равно отрицательна при всех x, кроме точек разрыва.
ответ: функция убывает на всей области определения.
3) (2/3)^(2x+3) <= (9/2)^(x-2)
(2/3)^(2x) * (2/3)^3 <= (9/2)^x * (2/9)^2
(4/9)^x * 8/27 <= (9/2)^x * 4/81
(4/9 * 2/9)^x <= (4/81) * (27/8)
(8/81)^x <= 1/6
Основание 0 < 8/81 < 1, поэтому график убывает.
При переходе от степеней к показателям знак неравенства меняется

5)

6) f(x) = x^2 - 2x; x0 = 3
f(x0) = 3^2 - 2*3 = 9 - 6 = 3
f ' (x) = 2x - 2
f ' (x0) = 2*3 - 2 = 4
Уравнение касательной
y = f(x0) + f ' (x0)*(x - x0) = 3 + 4(x - 3) = 3 + 4x - 12
y = 4x - 9
18
4,4(68 оценок)
Математика
26.03.2020 01:54
1
4,6(64 оценок)
Математика
04.07.2020 00:12
13
4,5(100 оценок)
Математика
27.10.2022 19:07
13
4,5(79 оценок)
Математика
20.04.2020 04:02
17
4,7(91 оценок)
Математика
02.03.2023 07:49
11
4,5(60 оценок)
Математика
22.04.2022 18:10
4
4,4(7 оценок)
Математика
18.09.2021 11:41
8
4,8(85 оценок)
Математика
03.05.2021 16:19
14
4,6(97 оценок)
Математика
25.06.2021 03:19
7
4,5(86 оценок)
Математика
10.06.2020 21:16