09.10.2020 00:09
Решено
Найти значения виражения 64 в степени 2/3 + 0,0625¼
Лучшие ответы

2
4,6(45 оценок)
Алгебра
09.10.2020 20:42
![64^{ \frac{2}{3} }+0.0625 ^{ \frac{1}{4} } = \sqrt[3]{64 ^{2} } +\sqrt[4]{0,0625} =4 ^{2} +0,5=16+0,5=16.5](/tpl/images/0000/1257/d668b.png)

6
4,5(14 оценок)
Алгебра
09.10.2020 20:42


16
4,5(38 оценок)
Алгебра
09.10.2020 05:29
Вычисление параметров треугольника по координатам его вершинПоложим A(x A ;y A )=A(15;9), B(x B ;y B )=B(−1;−3), C(x C ;y C )=C(6;21).
1) Вычислим длины сторон:
|BC| =√(x C −x B ) ^2 +(y C −y B ) ^2 =√(6−(−1))^ 2 +(21-(−3)) ^2 =√7 ^2 +24^ 2 =√49+576 =√625=√25.2) Составим уравнения сторон:
BC: x−xB/xC−xB=y−yB/yC−yB ⇔ x−(−1)6−(−1)=y−(−3)21−(−3) ⇔ x+17=y+324 ⇔ 24x−7y+3=0.6) Вычислим площадь треугольника:
S =1/2 |(x B −x A )(y C −y A )−(x C −x A )(y B −y A )∣ =1/2 ∣(−1−15)(21−9)−(6−15)(−3−9)∣=1/2 ∣(−16)⋅12−(−9)⋅(−12)∣ =12 ∣ −192−108∣=|−300|/2 =300/2 =150.10) Составим уравнения медиан:
AA1 : x−x A /x A 1 −x A =y−y A /y A 1 −y A ⇔ x−152.5−15 =y−99−9 ⇔ x−15−12.5 =y−90 ⇔ y−9=0.14) Составим уравнения высот:
AA 2 : x−x A /y C −y B =y−y A /x B −x C ⇔ x−1521−(−3) =y−9−1−6 ⇔ x−1524 =y−9−7 ⇔ 7x+24y−321=0;

0
4,4(8 оценок)
Алгебра
09.10.2020 08:26
Арифметическая прогрессия ,значит, каждый следующий член больше предыдущего на определенное число.
а2=а1+d
a3=а1+d+d
a1+а1+d+а1+d+d=18
3a1+3d=18
3*(a1+d)=18
a1+d=18/3
а1+d=6 - второй член арифм. прогрессии
также арифм. прогрессию можно записать как:
а1+а2+а3=18
а1+а3+6=18
а1+а3=12
а1=12-а3(это наша будущая подстановка)
b2=6+3
b2=9 - второй член геометр. прогрессии
теперь воспользуемся свойством геометр. прогрессии
(bn)^2=b(n-1)*b(n+1)
n-1 и n+1 номер члена прогрессии
(b2)^2=(a1+1)*(a3+17)
9^2=(a1+1)*(a3+17)
81=(a1+1)*(a3+17)
теперь вводим систему:
81=(a1+1)*(a3+17)
а1=12-а3
в 1 уравнение подставим второе
81=(12-а3+1)*(a3+17)
81=(13-а3)*(a3+17)
пусть а3=х
81=(13-х)*(х+17)
81=13х +221-х^2-17x
81=-x^2-4x+221
x^2+4x-221+81=0
x^2+4x-140=0
по т. виета
х1+х2=-4
х1*х2=-140
х1=10
х2=-14 (не подходит, -14<6,а3<а2, у насвозрастающая)
10=а3
18=10+6+а1
а1=2
ответ: 2,6,10
а2=а1+d
a3=а1+d+d
a1+а1+d+а1+d+d=18
3a1+3d=18
3*(a1+d)=18
a1+d=18/3
а1+d=6 - второй член арифм. прогрессии
также арифм. прогрессию можно записать как:
а1+а2+а3=18
а1+а3+6=18
а1+а3=12
а1=12-а3(это наша будущая подстановка)
b2=6+3
b2=9 - второй член геометр. прогрессии
теперь воспользуемся свойством геометр. прогрессии
(bn)^2=b(n-1)*b(n+1)
n-1 и n+1 номер члена прогрессии
(b2)^2=(a1+1)*(a3+17)
9^2=(a1+1)*(a3+17)
81=(a1+1)*(a3+17)
теперь вводим систему:
81=(a1+1)*(a3+17)
а1=12-а3
в 1 уравнение подставим второе
81=(12-а3+1)*(a3+17)
81=(13-а3)*(a3+17)
пусть а3=х
81=(13-х)*(х+17)
81=13х +221-х^2-17x
81=-x^2-4x+221
x^2+4x-221+81=0
x^2+4x-140=0
по т. виета
х1+х2=-4
х1*х2=-140
х1=10
х2=-14 (не подходит, -14<6,а3<а2, у насвозрастающая)
10=а3
18=10+6+а1
а1=2
ответ: 2,6,10
16
4,5(58 оценок)
Алгебра
29.08.2022 11:27
15
4,6(87 оценок)
Алгебра
16.02.2021 03:27
8
4,8(85 оценок)
Алгебра
25.04.2023 20:24
12
4,5(39 оценок)
Алгебра
07.05.2022 00:16
9
4,7(46 оценок)
Алгебра
10.11.2020 10:25
15
4,8(35 оценок)
Алгебра
20.04.2023 03:13
14
4,8(39 оценок)
Алгебра
09.12.2021 08:20
4
4,6(65 оценок)
Алгебра
12.01.2020 22:10
0
4,6(17 оценок)
Алгебра
08.10.2021 10:38
20
4,5(3 оценок)
Алгебра
18.12.2020 06:31