19.11.2020 07:52
Решено
Дано: треугольник abc- прямоугольный, угол b=90 градусов. bd-высота, угол bdc=90 градусов. bc=6см, ab=8см
Лучшие ответы

3
4,5(18 оценок)
Геометрия
19.11.2020 20:41
Дано: треугольник ABC- прямоугольный, угол B=90 градусов. BD-высота, угол BDC=90 градусов. BC=6см, AB=8см
что требуется?

10
4,4(80 оценок)
Геометрия
19.11.2020 20:10
В тр-ке АВС АС=40 см, ВМ=15 см К, Р и М - точки касания сторон АВ, ВС и АС соответственно.
В тр-ке АВМ АМ=АС/2=20 см. по т. Пифагора АВ²=АМ²+ВМ²=20²+15²=625,
АВ=25 см.
В тр-ке АВМ по теореме косинусов:
cosА=(АВ²+АМ²-ВМ²)/(2·АВ·АМ)=(25²+20²-15²)/(2·25·20)=0.8
В тр-ке АКМ по т. косинусов:
КМ²=АК²+АМ²-2·АК·АМ·cosA=20²+20²-2·20·20·0.8=160,
КМ=РМ=√160=4√10 см - это ответ.
В тр-ке АВС:
соsВ=(АВ²+ВС²-АС²)/(2·АВ·ВС)=(25²+25²-40²)/(2·25²)=-7/25,
В тр-ке ВКР ВК=ВР=АВ-АК=АВ-АМ=25-20=5 см (АМ=АК так как они касательные из одной точки).
КР²=ВК²+ВР²-2·ВК·ВР·cosВ=5²+5²-2·5²·(-7/25)=64,
КР=8 см - это ответ.
В тр-ке АВМ АМ=АС/2=20 см. по т. Пифагора АВ²=АМ²+ВМ²=20²+15²=625,
АВ=25 см.
В тр-ке АВМ по теореме косинусов:
cosА=(АВ²+АМ²-ВМ²)/(2·АВ·АМ)=(25²+20²-15²)/(2·25·20)=0.8
В тр-ке АКМ по т. косинусов:
КМ²=АК²+АМ²-2·АК·АМ·cosA=20²+20²-2·20·20·0.8=160,
КМ=РМ=√160=4√10 см - это ответ.
В тр-ке АВС:
соsВ=(АВ²+ВС²-АС²)/(2·АВ·ВС)=(25²+25²-40²)/(2·25²)=-7/25,
В тр-ке ВКР ВК=ВР=АВ-АК=АВ-АМ=25-20=5 см (АМ=АК так как они касательные из одной точки).
КР²=ВК²+ВР²-2·ВК·ВР·cosВ=5²+5²-2·5²·(-7/25)=64,
КР=8 см - это ответ.


16
4,7(63 оценок)
Геометрия
19.11.2020 20:10
Высота равнобедренного треугольника является и его медианой. Тогда по Пифагору боковая сторона нашего треугольника равна √(15²+20²)=25см.
Расстояние от вершины С треугольника до точки, в которой вписанная окружность касается стороны, равно d=(a+b-c)/2 = p-c, где р - полупериметр, с - сторона, лежащая против вершины С. Полупериметр нашего треугольника равен 45см. Тогда расстояние от вершины В до точек касания ВК=ВР=45-40=5см. Треугольник КВР подобен треугольнику АВС с коэффициентом подобия 5/25=1/5.
Тогда расстояние КР=40*(1/5)=8см. Это ответ.
Опустим из точки Р перпендикуляр РQ на сторону АС. Треугольник QРС подобен треугольнику МВС с коэффициентом подобия 20/25=4/5. Тогда РQ=15*4/5=12см, QC=20*4/5=16см, а МQ=20-16=4см.
По Пифагору из треугольника QMP расстояние
МР=МК=√(РQ²+МQ²)=√(12²+4²)=4√10см. Это ответ.
Расстояние от вершины С треугольника до точки, в которой вписанная окружность касается стороны, равно d=(a+b-c)/2 = p-c, где р - полупериметр, с - сторона, лежащая против вершины С. Полупериметр нашего треугольника равен 45см. Тогда расстояние от вершины В до точек касания ВК=ВР=45-40=5см. Треугольник КВР подобен треугольнику АВС с коэффициентом подобия 5/25=1/5.
Тогда расстояние КР=40*(1/5)=8см. Это ответ.
Опустим из точки Р перпендикуляр РQ на сторону АС. Треугольник QРС подобен треугольнику МВС с коэффициентом подобия 20/25=4/5. Тогда РQ=15*4/5=12см, QC=20*4/5=16см, а МQ=20-16=4см.
По Пифагору из треугольника QMP расстояние
МР=МК=√(РQ²+МQ²)=√(12²+4²)=4√10см. Это ответ.

4
4,6(88 оценок)
Геометрия
09.06.2020 23:02
0
4,8(69 оценок)
Геометрия
09.03.2020 16:47
18
4,6(56 оценок)
Геометрия
20.01.2022 05:31
0
4,8(49 оценок)
Геометрия
20.04.2021 01:00
18
4,5(68 оценок)
Геометрия
02.04.2020 23:14
7
4,5(69 оценок)
Геометрия
03.05.2022 15:33
17
4,6(8 оценок)
Геометрия
16.01.2020 22:06
3
4,6(25 оценок)
Геометрия
08.06.2021 11:09
2
4,7(80 оценок)
Геометрия
10.05.2022 21:07
4
4,6(25 оценок)
Геометрия
16.05.2020 02:51